Dynamical delocalization in random Landau Hamiltonians
نویسندگان
چکیده
منابع مشابه
Dynamical Delocalization in Random Landau Hamiltonians
We prove the existence of dynamical delocalization for random Landau Hamiltonians near each Landau level. Since typically there is dynamical localization at the edges of each disordered-broadened Landau band, this implies the existence of at least one dynamical mobility edge at each Landau band, namely a boundary point between the localization and delocalization regimes, which we prove to conve...
متن کاملDelocalization in Random Landau Hamiltonians
We prove the existence of dynamical delocalization for random Landau Hamiltonians near each Landau level. Since typically there is dynamical localization at the edges of each disordered-broadened Landau band, this implies the existence of at least one dynamical mobility edge at each Landau band, namely a boundary point between the localization and delocalization regimes, which we prove to conve...
متن کاملQuantization of the Hall Conductance and Delocalization in Ergodic Landau Hamiltonians
We prove quantization of the Hall conductance for continuous ergodic Landau Hamiltonians under a condition on the decay of the Fermi projections. This condition and continuity of the integrated density of states are shown to imply continuity of the Hall conductance. In addition, we prove the existence of delocalization near each Landau level for these two-dimensional Hamiltonians. More precisel...
متن کاملDelocalization in random polymer models
A random polymer model is a one-dimensional Jacobi matrix randomly composed of two finite building blocks. If the two associated transfer matrices commute, the corresponding energy is called critical. Such critical energies appear in physical models, an example being the widely studied random dimer model. It is proven that the Lyapunov exponent vanishes quadratically at a generic critical energ...
متن کاملLandau Hamiltonians with Random Potentials : Localization and the Density of States
We prove the existence of localized states at the edges of the bands for the two-dimensional Landau Hamiltonian with a random potential, of arbitrary disorder, provided that the magnetic field is sufficiently large. The corresponding eigenfunctions decay exponentially with the magnetic field and distance. We also prove that the integrated density of states is Lipschitz continuous away from the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Mathematics
سال: 2007
ISSN: 0003-486X
DOI: 10.4007/annals.2007.166.215